第二十三章木星会变成太阳吗   近年来,对木星的考察表明:木星正在向其周围宇宙空间释放巨大能量,它所放出的能量是它所获得太阳能量的两倍。一般说来,只有当星核温度特别高时,至少不低于开氏温标2万度时,星体才有可能放出如此之强的热辐射流。   新近的研究向科学家们揭示了一个有关木星的惊人秘密:木星是一个由液态氢构成的巨星体,它和太阳一样,没有极坚硬的固体表面。木星内部的能量释放,主要是通过对流形式来实现的。但是,射向周围空间的热辐射流是由较薄的大气表层中的辐射转移来调节的。可见,行星的演化速度关键取决于这个大气层表层的透明度。现已查明,木星的核心温度目前已高达28万K,一般说来,只要星核温度达到5000K,就可以使木星核气化。由于木星从前的内能积蓄极为丰富,因而保证了木星具有今天的亮度。此外,木星还有一个重要特性:当木星的半径缩小时,气压由气态大气层中的低压值迅速增大到木星3/4半径时的30帕。同时,氢分子的气压将向密度发生巨大飞跃的金属阶段过渡。这时,木星的中心压将达到100~1000帕。所以,离木星最近的几颗卫星的运行轨道对木星表面密度的变化特别敏感。   木星内部的液态金属成分说明了木星具有强磁场。因为极强的导电性和低黏度可以产生液磁流机制。正是这种液磁流机制,才使木星能够自转并导致液态金属中的热对流。这种机制还可使木星具有内外磁场。木星内部能产生巨大能量的另一个原因就是,木星巨大的引力能正在缓慢地转换成热能的结果。   木星除了靠把自己的引力能转换成热能外,还不断掳获来自太阳的能量和其他一些物质。这些物质是以电子和质子流的形式向太阳系各处弥漫的(也就是太阳风),由于木星不断吸积着太阳放出的携能粒子,所以它本身所具有的能量越来越大。   木星向周围空间放出的热能使离它最近的一颗伽利略卫星——木卫1所含的冰完全消失。但在其他3颗伽利略卫星,即木卫2、木卫3和木卫4上却仍旧含有冰。因此木卫的轨道离木星越远,卫星的冰质含量就越大。   在木星的连续演化过程中,当发生引力收缩和逐渐冷却时能释放出多余的热量。由此可见,木星演化的根本特点是,尽管太阳星云中的各种化合物已被吸入具有太阳比例的石质星核中,但是在木星的外壳中仍具有太阳比例的氢和氦。而“石”的含量相对氢和氦来说是变化的。   众所周知,太阳之所以不断放射出大量的光和热,是因为在太阳内部时刻进行着两种热核反应:一种是质子——质子连锁反应,即由4个氢核聚合成1个氦核的反应。另一种是碳循环连锁反应,它也是由4个氢核聚合成一个氦核的反应。但是,太阳所拥有的大部分能量主要是靠前一种反应获得的。而木星是一个巨大的液态氢星球。所以,它本身已具备了无法比拟的天然核燃料,加之木星的中心温度目前已达到28万K,这就为进行热核反应所需的高温创造了良好开端。至于热核反应所需的高压条件,就木星目前的收缩速度和对太阳放出的能量及携能粒子的吸积特性来看,木星再经过几十亿年的演化后,中心压可达到最初发生热核反应时所需的压力水平。   一旦木星上爆发了大规模的热核反应,以千奇百怪的旋涡形式运动的木星大气层将充当释放木星热核能的“发射器”。所以,天文学家们通过研究得出一个惊人的结论:木星内部已积蓄了大量热核能源,它正孕育着像太阳上发生的那种热核反应,在经过几十亿年的演化后,这颗天文学家久视为行星的木星很可能演化成一颗太阳系中的第二颗恒星。

上一页 下一页